AMAP-Colloquium January 31st, 2019

Ultrasonic Inspection of aluminum components

Conventional to phased array, manual to automatic

Stefan Kierspel KARL DEUTSCH Prüf- und Messgerätebau GmbH + Co KG

Wuppertal

Contents

- Introduction to KARL DEUTSCH
- Basics of UT inspection
- Distinctiveness of UT testing on aluminum
- Inspection of welds on thin plates with complex geometries
- Inspection of casted aluminum plates
- Integrated precision measurement of wall thickness
- Inspection of spotwelded aluminum plates
- Different types of automatic testing machines

Introduction to KARL DEUTSCH

Ing. Karl Deutsch & LEPTOSKOP

LEPTOSKOP

coating thickness measurement since 1948, founding of company May 13th 1949

KARL DEUTSCH

KARL DEUTSCH

NAME ULUI DON

- Founded in 1949, family business in 3rd generation
- Two locations in Wuppertal
- 130 employees in Wuppertal +20 more worldwide

1975

Prof. Dr. Volker Deutsch * 1932, KD 1961-2001 Dr. (USA)

Wolfram

Deutsch

KD 1998 - ...

KARL DEUTSCH in Wuppertal

Works 1: Portables, R&D, Administration

Works 2: Testing Systems Production

KARL DEUTSCH Product Range

- Machines, instruments and equipment for PT, MT and UT
- UT probes development and manufacturing
- Portable units for coating- and wallthickness measurement
- Portable units for measurement of magnetic fields

Application-Laboratory

- Consulting
- Tests on customer specimens
- Instrument-Training
- Application development

Dr. rer. nat. Helge Rast (Laboratory head)

Dr.-Ing. Volker Schuster (QM, Standards)

Stefan Kierspel (Productmanager PA/UT)

Contakt: kierspel@karldeutsch.de alab@karldeutsch.de

Basics of UT inspection

Principles of UT inspection

Principles of UT inspection

Ultrasonic Reflection from Defects

ECHOGRAPH Ultrasonic Probes

Criteria of Choice:

frequency (material, penetration depth, sensitivity)

- > probe size (intensity)
- > incidence angle (application)
- ➤ width of sound field, focus

Sound Field Characteristics

Phased-Array Probes

- Probe divided into small strips => elements (linear array)
- Every element can be excited individually
- Probes are flexible according:
 - Oscilator size
 - Insonification angle
 - Focussing

Standard PA-UT methods

Display of results

Full Matrix Capture (FMC)

- Recording of a complete set of A-scans
- Each element is excited one by one while all elements are receiving
- Result: n x n Matrix of A-scans

Principle of the Total Focusing Method (TFM)

TFM is a post-processing algorithm for FMC data.

- Discretion of an inspection area to a grid
- Creation of an artificial focus at all points of the grid by summation of the FMC data

Advantage:

- Inspection area may be wider than the probe
- Focussation within the complete inspection zone

Soundfield of a single element

- CIVA simulation of a probe with 10 MHz, 64 elements, 0.3 mm pitch, 0.05 mm gap
- Wide soundfield
- Probe "looks" into all directions

What TFM can do

- Sample: ASTM E2491 Phased Array Test Block Metric 7075-T6 Aluminum
- Instrument: GEKKO
- Probe: 10 MHz, 64 elements, 0.3 mm pitch, 0.05 mm gap

What TFM can do Focussed Total Focusing Method B-scan B-scan --***** 16/64 16/64 32/64 64/64

Distinctiveness of UT testing on aluminum

Special characteristics of aluminum in terms of UT inspection are:

- Relatively high sound velocity of L-waves (6.400 m/sec) and relatively low sound velocity of T-waves (3.100 m/sec)
 => angle inspection with T-waves can go down to 30° without having an L-wave
- Relatively low sound attenuation => pulser voltage on steel might be ok but leads to over-saturated signals on aluminum
- Inhomogenious sound velocity on rolled parts
- Grain size influences sound attenuation

Inspection of welds on thin plates with complex geometries

Probe 16 Elements, 10 MHz, 50° wedge Sector-Scan 40-80 °

Interpretation

Interpretation

Inspection of casted aluminum plates

Inspection setup

Without focussation

Scan gain Analysis gain Ref. gain Dynamic * * = = 4 dB dB 100% 11:22 dB 6 -**PA - S1** A-S-C-D-Scan ين من المركز ا 100.0 150.0 182.58 mm 200.0 Ĵ 48 60 72 84 96 -100 100 200 218 2' 24' 36 17 Analysis ~ 0 End 144 Capture v2.3.1 - A1 [2019/01/16 - 10:44]

FBH 2,5 mm at 150 mm unfosussed Sector Scan -10° to +10°

With focussation at 150 mm

Ref. gain Scan gain Analysis gain Dynamic ÈÈ \$ dB dB dB 11:23 0 100% **PA - S1** A-S-C-D-Scan 50 % 6 dec -100 100 200 218 24' 36' 48' 60' 72' 84' 96' 17 0 Analysis -End 144 MH. -----Capture v2.3.1 - A2 [2019/01/16 - 10:44]

FBH 2,5 mm at 150 mm focus at 150 mm Sector Scan -10° to +10°

All area focus with TFM

Ref. gain Scan gain Analysis gain Dynamic ÊÊ 4 dB 11:25 dB 2 100% dB TFM A-T-Scan 100% 100 % 135 mm mm -50 50 75 72 84 -10 10 20 17 End Analysis M 0 HM Capture v2.3.1 - A3 [2019/01/16 - 10:48]

FBH 2,5 mm at 150 mm TFM scan

Evaluation of the defect size

Ref. gain Scan gain Analysis gain Dynamic tį. 11:31 dB dB 2 dB 100% TFM A-T-Scan **^**8 -1.934mm 9248nmm 59.4 % 97.3 % 59,4 % ∆ Shot. = 2.4 mm △ Depth = 0 mm ΔX = 2.4 mm ΔZ = 0 mm ∆ Ampl. = 4.3 dB △ Ampl. = 4.3 dB ∆ Depth = 0 mm Distance = 2.4 mm ∆ Shot = 2.4 mm -10 36 -10 詳 Analysis 0 End 144 -----Capture v2.3.1 - A3 [2019/01/16 - 10:48]

FBH 2,5 mm at 150 mm TFM scan

Evaluation of the defect size

Testblock with same dimensions, FBH 1,8 mm at 150 mm and 250 mm

Conventional UT with ECHOGRAPH 1095 and probe S 24 HB 4

Without focussation

Analysis gain Ref. gain Scan gain Dynamic 1 dB dB dB 0 100% 12:44 -**PA - S1** A-S-C-D-Scan and the state of the 200.0 -100 200 218 60' 72' 84' 96' 100 24 17 Analysis ~ Ê 0 End 144 MH. Capture v2.3.1 - Linear array_1 [2019/01/31 - 10:47]

FBH 1,8 mm at 150 mm unfosussed Sector Scan -10° to +10°

With focussation at 150 mm

Ref. gain Scan gain Analysis gain Dynamic ţ, dB 12:46 dB dB 0 100% **PA - S1** A-S-C-D-Scan A.C. D.C. B. D. D. 180.26 mm 0 deg 48' 60' 72' 84' 96' -100 100 200'21 24 36 17 0 End Analysis -Del. 144 Capture v2.3.1 - Linear array_2 [2019/01/31 - 10:48]

FBH 1,8 mm at 150 mm focus at 150 mm Sector Scan -10° to +10°

All area focus with TFM

Scan gain Analysis gain Ref. gain Dynamic tį. dB dB dB 0 100% 12:49 ∇ TFM A-T-Scan 100 % 100% LL mm VIN MA 50 -50 75 -10 10 48 60' 72' 84' 96' 20 [] Analysis -0 End 144 Del. ---Capture v2.3.1 - TFM linear array_5 [2019/01/31 - 10:53]

FBH 1,8 mm at 150 mm TFM scan

Evaluation of the defect size

FBH 1,8 mm at 150 mm TFM scan

All area focus with TFM

Scan gain Analysis gain Ref. gain Dynamic 4 3 dB 12:53 dB dB 100% TFM A-T-Scan LL 50 % A.M. 50 % Mm 0.96 n 50 75 10 60'72'84'96' -10 0' 20 48 17 Ê Analysis ~ 0 End 144 ---MA Capture v2.3.1 - TFM linear array_6 [2019/01/31 - 10:54]

FBH 1,8 mm at 250 mm TFM scan

Evaluation of the defect size

FBH 1,8 mm at 250 mm TFM scan

Integrated precision measurement of wall thickness

Sonic Eye by Starrag

Multi-axis grinding machine for large vertical parts

Sonic Eye by Starrag

Sonic Eye as a changing tool Automatic thickness measurement, measured data directly influence the grinding process

Inside Sonic Eye

Special Version of standard precision wall-thickness gauge ECHOMETER 1077 with probe DS 12 PB 1-7

Inspection of spotwelded aluminum plates

Spotweld inspection

Spot welding is useful as it can produce high quality welds at a relatively low cost

About 3.000-5.000 spots on a regular car body

Welding Process

Pressure applies to assure full sheet contact
Heat melt the steel to form the nugget weld

The Result

The challenge

Weld quality is impossible to predict visually from the outside

Some nugget types

• Good

• No Weld (Loose)

• Undersized

Spotweld inspection with UT/Mate

Spotweld inspection - probes

Probes have to be selected according to the nominal nugget size

Spotweld inspection – basic principle

Spotweld inspection – basic principle

Good spot

• Spot too small

• Cladding

• No weld

Spotweld inspection – basic principle

Spotweld inspection with PA UT/X

Phased-Array-Technique is applied in UT/x

- Matrix-Probe with 61 Elements
- Only one probe required
- PA-Electronic MANTIS
- Weld nugget is evaluated
- Welded area is measured

