

AMAP Colloqium

Re-defining Driving Experience – Competences & Concepts Behind the Research Vehicle SpeedE

Aachen, 9th March 2016

Dr.-Ing. Björn Hören MBA,

Dipl.-Ing. Sven Faßbender, Michael Struth M.Sc., Univ.-Prof. Dr.-Ing. Lutz Eckstein

Institute for Automotive Engineering (ika), RWTH Aachen University

Introduction of the SpeedE Research Vehicle

- Functionally Adapted Physical Vehicle Architecture
- Body Structure
- Crash Deformable Battery System
- Electric Powertrain and Vehicle Electrical System
- Wheel-Individual Steer-by-Wire
- Sidesticks for Lateral Vehicle Guidance
- Synopsis and Outlook

Introduction of the SpeedE Research Vehicle

Open research and innovation platform

Introduction of the SpeedE Research Vehicle Timeline

INSTITUT FÜR KRAFTFAHRZEUGE

- Introduction of the SpeedE Research Vehicle
- Functionally Adapted Physical Vehicle Architecture
- Body Structure
- Crash Deformable Battery System
- Electric Powertrain and Vehicle Electrical System
- Wheel-Individual Steer-by-Wire
- Sidesticks for Lateral Vehicle Guidance
- Synopsis and Outlook

Functionally Adapted Physical Vehicle Architecture

Prospects of purpose design

Conversion Design

•Based on existing concept

•Efficient design approach

- Low risk regarding feasibility and invest
- Limited innovation potential for technical and creative design
- Evolutionary development

Purpose Design

•New Basic Vehicle Concept

- Comply with unique requirements and functions
- Innovative dimensional concepts possible
- Less compromises and improved setting of components

•Revolutionary development

- Introduction of the SpeedE Research Vehicle
- Functionally Adapted Physical Vehicle Architecture
- Body Structure
- Crash Deformable Battery System
- Electric Powertrain and Vehicle Electrical System
- Wheel-Individual Steer-by-Wire
- Sidesticks for Lateral Vehicle Guidance
- Synopsis and Outlook

Functionally Adapted Physical Vehicle Architecture Ingress strategy for sportscar with central driver position

[Source: Fifth Gear]

Huge lateral distance from sill to seat

No continuous seat row

Torso movement limited by roofrail

Leg movement limited by steering wheel

Testing and Prototyping

150 · 16ho0042.pptx

Body Structure Development approach

Body Structure Unique Solutions Design Features of Functional Prototype

Body Structure Numerical Analysis of Functional Prototype

Example: Front crash 40% offset deformable barrier

Example: Front crash small overlap 25% offset

- Introduction of the SpeedE Research Vehicle
- Functionally Adapted Physical Vehicle Architecture
- Body Structure
- Crash Deformable Battery System
- Electric Powertrain and Vehicle Electrical System
- Wheel-Individual Steer-by-Wire
- Sidesticks for Lateral Vehicle Guidance
- Synopsis and Outlook

Crash Deformable Battery System Approach

Crash Deformable Battery System Behaviour of 18650 Battery Cell Under Mechanical Load

Battery cells have to be protected from high deformations to avoid thermal runaway

Crash Deformable Battery System Physical Tests

18650 Cell Quasi-static

Battery System Dynamic

Crash Deformable Battery System Physical Tests

- Introduction of the SpeedE Research Vehicle
- Functionally Adapted Physical Vehicle Architecture
- Body Structure
- Crash Deformable Battery System
- Electric Powertrain and Vehicle Electrical System
- Wheel-Individual Steer-by-Wire
- Sidesticks for Lateral Vehicle Guidance
- Synopsis and Outlook

Electric Powertrain and Vehicle Electrical System Topology

150 · 16ho0042.pptx

Slide No. 18 2017/16/02

© ika 2016 · All rights reserved

Electric Powertrain and Vehicle Electrical System Drive-by-Wire & Brake-by-Wire

- Introduction of the SpeedE Research Vehicle
- Functionally Adapted Physical Vehicle Architecture
- Body Structure
- Crash Deformable Battery System
- Electric Powertrain and Vehicle Electrical System
- Wheel-Individual Steer-by-Wire
- Sidesticks for Lateral Vehicle Guidance
- Synopsis and Outlook

Historical Review Steer-by-Wire system and large wheel steering angles

Steer-by-Wire System

Research vehicle at ika 1991 with electro hydraulic Steer-bywire system

Sidestick with potentiometer and rotary magnet

Large Wheel Steering Angles

California United States. Date: 1933.

Steer-by-Wire System of the Research Vehicle SpeedE Fields of research

Steer-by-Wire System Innovative front axle suspension concept

Implementation

Validation

Slide No. 23 2017/16/02

Steer-by-Wire System of the Research Vehicle SpeedE

Innovative vehicle dynamics functionality

Improvement of µ-split braking

Slide No. 24

2017/16/02

- Introduction of the SpeedE Research Vehicle
- Functionally Adapted Physical Vehicle Architecture
- Body Structure
- Crash Deformable Battery System
- Electric Powertrain and Vehicle Electrical System
- Wheel-Individual Steer-by-Wire
- Sidesticks for Lateral Vehicle Guidance
- Synopsis and Outlook

SpeedE Vehicle Guidance

SpeedE Functional Safety

Safety and reliability are the main concerns when it comes to Steer-By-Wire Systems

1. Solution

Mechanical fallback layers or component redundancy *"If one component fails, I need another one to replace it"*

2. Solution

Keep the solution space as wide as possible "If one component fails, I still have to be able to bring the vehicle to a safe standstill"

Steering angle failures are compensated by other vehicle systems (counter steering, torque-vectoring and braking)

SpeedE Functional Safety

- Introduction of the SpeedE Research Vehicle
- Functionally Adapted Physical Vehicle Architecture
- Body Structure
- Crash Deformable Battery System
- Electric Powertrain and Vehicle Electrical System
- Wheel-Individual Steer-by-Wire
- Sidesticks for Lateral Vehicle Guidance
- Synopsis and Outlook

Synopsis and Outlook

- INSTITUT FÜR KRAFTFAHRZEUGE
- SpeedE resembles a unique and innovative research platform to investigate on future mobility
- Complete X-by-Wire platform

Outlook:

- Further refinement of vehicle functions i.e. feed-forward and feed-back behaviour of the Steer-by-Wire system
- Development and implementation of a sensor concept for automated driving
- Implementation of functions for automated driving

Thank you for your attention

Thanks to the Hans Hermann Voss foundation for their support in developing SpeedE

HANS HERMANN VOSS-STIFTUNG

fka

Dr.-Ing. Björn Hören MBA

Institute for Automotive Engineering (ika) RWTH Aachen University Steinbachstr. 7 52074 Aachen Germany

Phone +49 241 8861 120 Fax +49 241 8861 110

Email hoeren@fka.de Internet www.ika.rwth-aachen.de

