ENERGY. FUTURE. ZAE.

Vacuum Super Insulation at High Temperatures Development of a Highly Efficient Thermal Insulation for Applications in the Aluminium Industry

Matthias Demharter, M.Sc.

© Bavarian Center for Applied Energy Research e. V. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, and dissemination as well as in the case of industrial property rights.

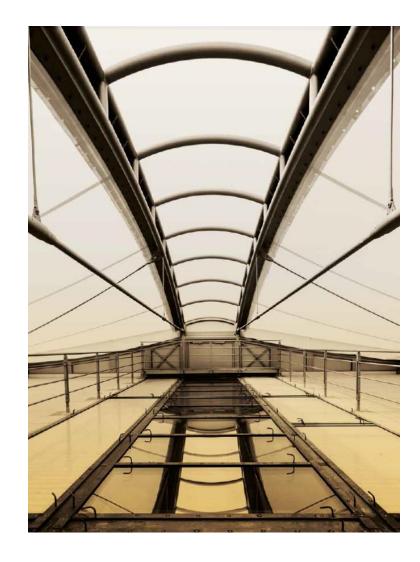
- 1. Preface | Introduction of ZAE Bayern
- 2. Vacuum Super Insulation (VSI) | Functionality & Example Projects
- 3. Vacuum Insulation Panels (VIP) | Functionality & Applications
- 4. VSI at High Temperatures | Potential & Possible Applications
- 5. Profitability of VSI | Costs & Amortisation
- 6. Conclusion and Outlook

ZAE BAYERN

Introduction of ZAE Bayern

© Bavarian Center for Applied Energy Research e. V. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, and dissemination as well as in the case of industrial property rights.

ZAE Bayern – Mission and Vision

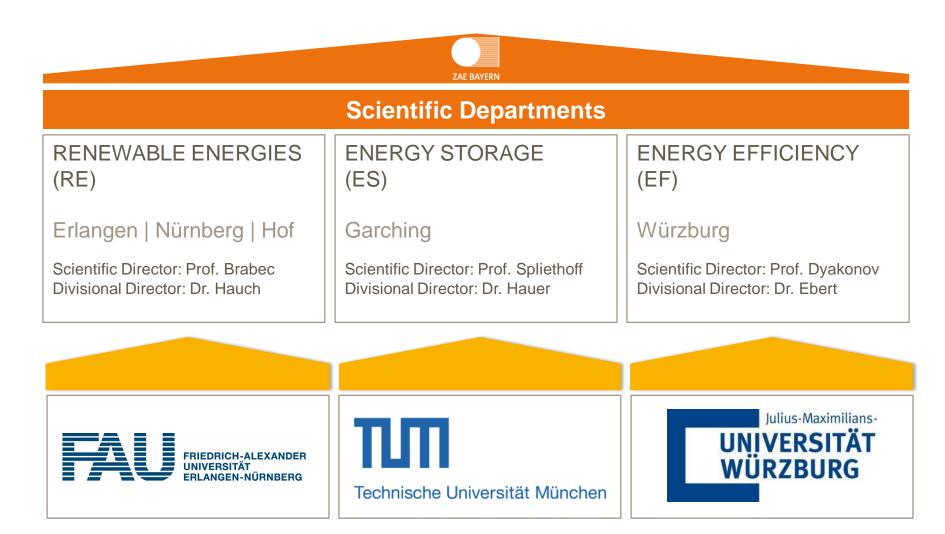

Main fields of activity (since 1991):

- Research
- Practical implementation
- Training and education
- Consulting and information

in all areas of energy technology and related sciences

Objective:

Realisation of a carbon-neutral energy supply using renewable energies and energy- efficient technologies


ZAE Bayern: Overview in Numbers

Scientific Departments

Department Energy Storage (ES)

~85 Employees

~5,5 million € funds per year

Energy Storage

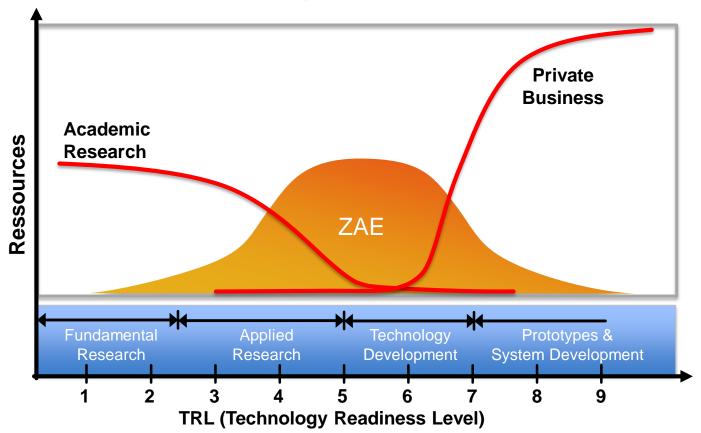
Flexibility for heat and power

System Engineering

Solar Thermal and Geothermal

Thermal Energy Storage

Electrical Energy Storage


Heat Transformation

AMAP Colloquium 23.03.2017

ZAE Bayern – Applied Research for the Industry

From basic research to prototypes

ZAE Bayern bridges the gap between fundamental research and commercialization of new technologies.

Partners of ZAE Bayern

From SMEs to big corporations

SIEMENS WVaillant VARTA VATTENFALL SU WACKER

AMAP Colloquium 23.03.2017

© ZAE Bayern

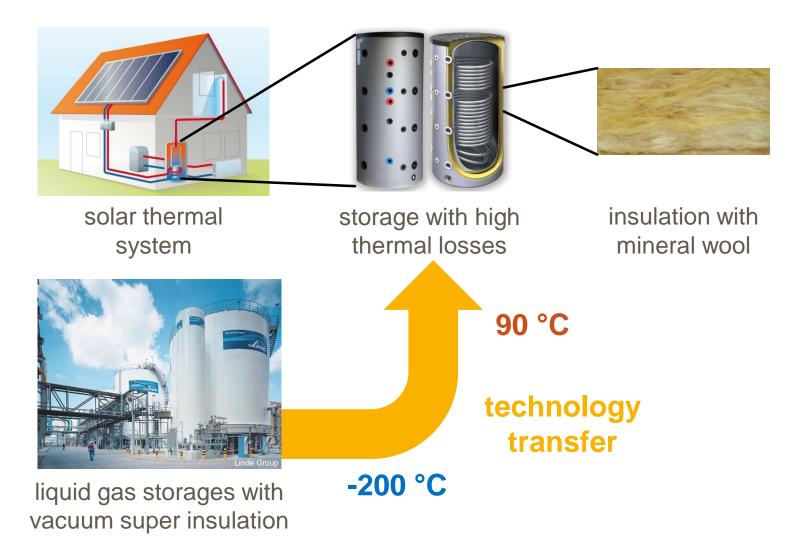
Partners of ZAE Bayern

From SMEs to big corporations

ZAE Bayern: Prize-Winning

Awards and Prizes

ZAE BAYERN


Vacuum Super Insulation (VSI)

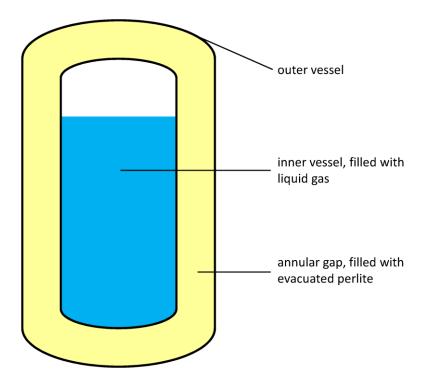
© Bavarian Center for Applied Energy Research e. V.

All rights reserved, also regarding any disposal, exploitation, reproduction, editing, and dissemination as well as in the case of industrial property rights.

History of VSI storage development at ZAE Bayern

Example Project: "Super-Insulated Long-Term Hot Water Storage" (2012)

- BMU grant number 0325964A
- 16 m³ storage within the heating system of an office building
- Outer diameter: 2.4 m
- T_{in}: **87** °C, T_{out}: 4 °C
- Measured cooling rate: 0,23 °C pro Tag conventional storage: 1–3 °C pro Tag


Improvement by factor 4 – 10

Construction of VSI Containers

- Double-walled steel container
- Annular gap filled with microporous powder
- Evacuation of the insulation (≈ 0.01 mbar)

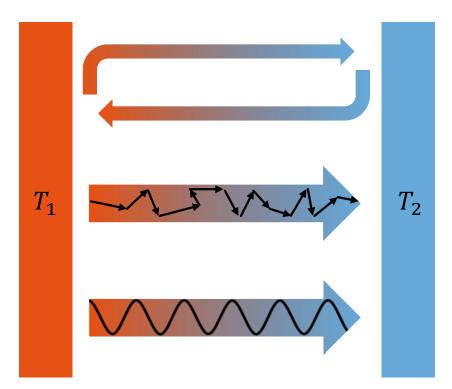
Total thermal conductivity:

- ≈ 0,003 ... 0,005 W/mK for cryogenic applications (-200 °C)
- \approx 0,007 ... 0,009 W/mK for hot water storage (100 °C)

 \approx 0,02 ? 0,05 W/mK for molten aluminium applications (750 °C)

VSI Powder Material: Expanded Perlite

- Raw Perlite
 - Volcanic glass, water content: 2–5 %
 - Main deposit: Greece, Turkey, USA
 - Chemical composition: SiO₂ (65–75 %), Al₂O₃ (10–15 %), K₂O, Na₂O, Fe₂O₃, CaO, MgO
- Expansion process
 - Heating (≈ 1000 °C)
 - Softening of the glassy material
 - Evaporation of contained water
 - Development of pores due to volume expansion
- Expanded Perlite
 - Density: 50–75 kg/m³
 - Porosity: ≈ 98 %
 - Mean pore diameter: 10–100 µm
 - Price: 50–75 €/m³



Basics of Heat Transfer

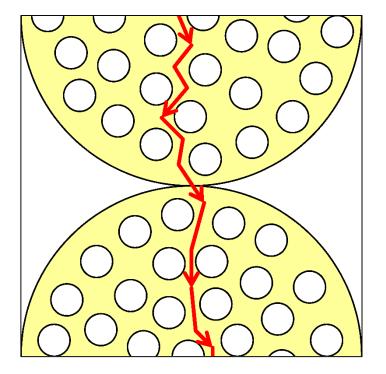
Heat Transfer Mechanisms:

- Convection: Net mass transport (free or forced) within a fluid
- Conduction: Diffusion process, usually caused by collisions between particles
- Radiative transfer: Irradiation of thermal energy (photons)

Why is thermal insulation with VSI powders better than with conventional materials?

Comparison of heat transport mechanisms	VSI powder	conventional insulation
Inhibition of convection due to confinement of air in pores	\checkmark	\checkmark
Reduction of radiative transfer by absorption and scattering	\checkmark	\checkmark
Low solid conduction due to high porosity and small contact areas	\checkmark	\checkmark
Suppression of gas conduction due to evacuation	\checkmark	×
Total thermal conductivity	λ = 0,007 W/mK	λ ≥ 0,030 W/mK

Radiative Transfer and Infrared Opacifiers


Extinction coefficient *E*: measure for attenuation of thermal radiation by absorption and scattering

Material	<i>E</i> [1/m]
mineral wool (HT-optimised)	2.000 - 5.000
perlite	2.000 - 4.000
perlite + opacifier	5.000 – 10.000

Examples for opacifiers: SiC, Fe₃O₄, soot

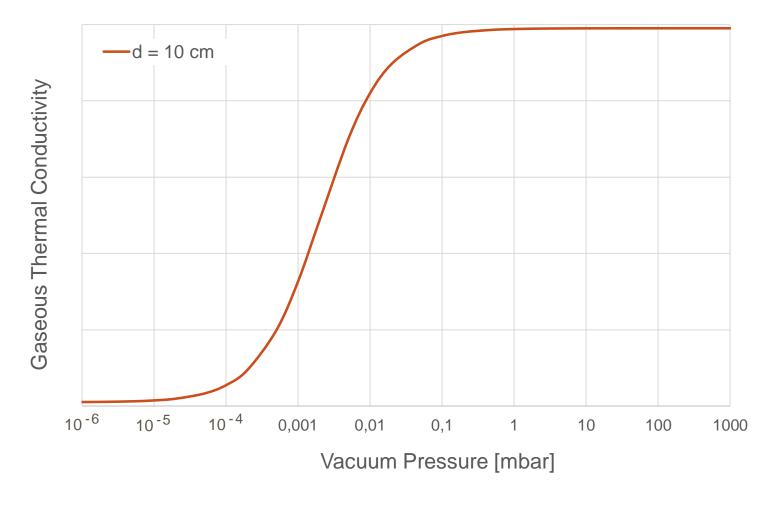
Solid Heat Conduction and Contact Resistances

Thermal conductivity of the massive material fraction: ≈ 1 W/mK

Solid thermal conductivity of VSI powders: ≈ 0,001 W/mK

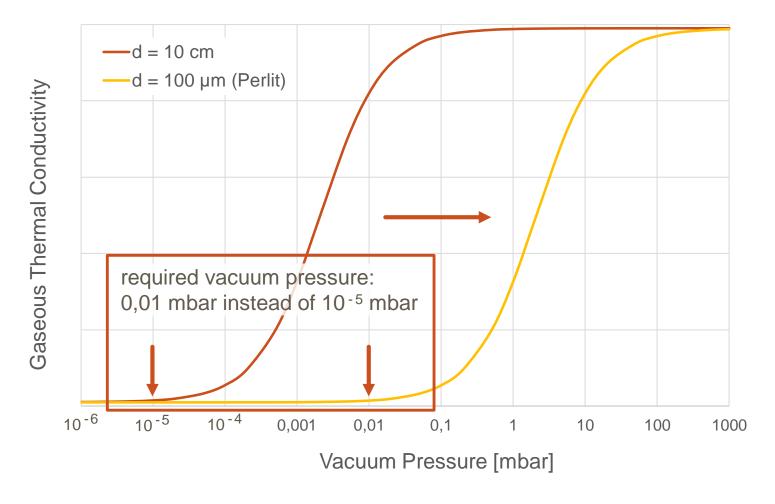
 \rightarrow reduction by factor 1000

Why is thermal insulation with VSI powders better than classical vacuum insulation (Thermos flask)

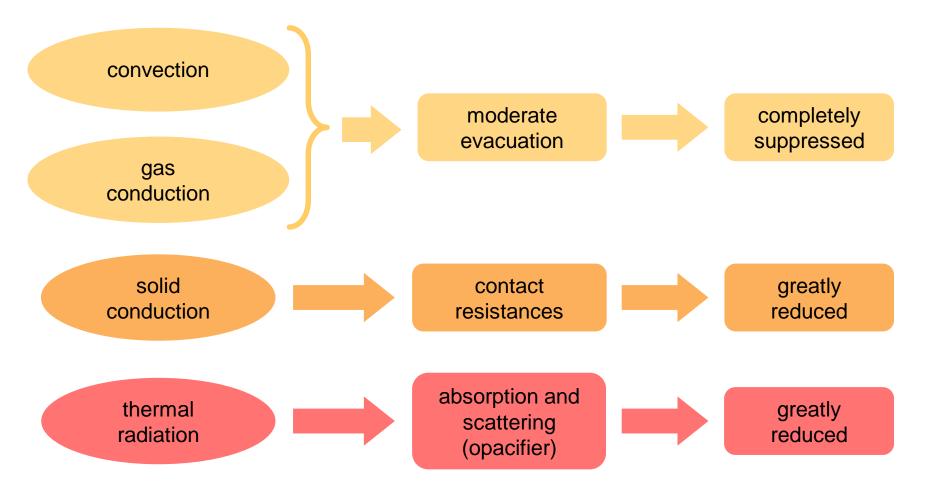

Comparison of heat transport mechanisms	VSI powder	vacuum insulation (VI)
Suppression of air conduction and convection due to evacuation	\checkmark	\checkmark
Absence of solid material as a medium for conduction	×	\checkmark
Reduction of radiative transfer by absorption and scattering	\checkmark	×
Total heat flow	q = 0,14 W/m ² K	$q = 0,4 \text{ W/m}^2\text{K}$

 $(d = 5 \text{ cm}, T_1 = 90 \text{ °C}, T_2 = 10 \text{ °C}, \epsilon = 0,1)$

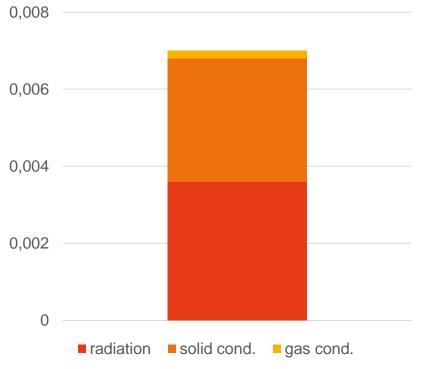
VI vs. VSI: Vacuum Requirements

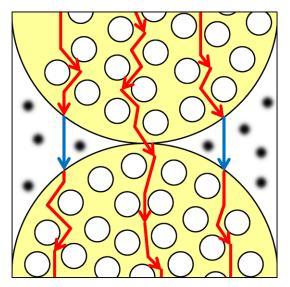

Gaseous thermal conductivity as a function of vacuum pressure at different void dimensions d

VI vs. VSI: Vacuum Requirements


Gaseous thermal conductivity as a function of vacuum pressure at different void dimensions d

Summary: Heat Transport in VSI Powders


The exceptionally low thermal conductivities of VSI powders can be explained as follows:

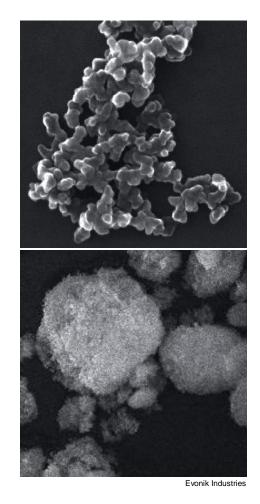

Modelling of the Heat Transport and Its Individual Mechanisms

optimisation for hot water storages: $T = 40 \ ^{\circ}C$ $p = 0,01 \ mbar$ $\rho = 65 \ kg/m^{3}$ $\lambda = 0,007 \ W/mK$

Heat Transport in Evacuated Perlite Powders for Super-Insulated Long-Term Storages up to 300 °C

Beikircher T., Demharter M. Journal of Heat Transfer, 135, 051301. (2013)

Vacuum Insulation Panels (VIP)


© Bavarian Center for Applied Energy Research e. V. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, and dissemination as well as in the case of industrial property rights.

Synthesis: flame hydrolysis of SiCl₄

- SiO₂ droplets (primary particles) •
- Merging of aggregates
- Agglomeration
- Chemical components: pure SiO₂ (>99,8 %) ۲
- **Properties:**
 - Density: 50–120 kg/m³
 - Porosity ca. 98 %
 - Mean pore diameter: 10–100 nm
 - Price: 250–350 €/m³

VIP Structure

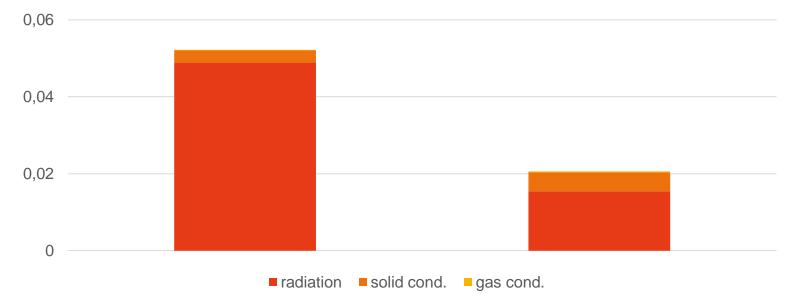
- Core: pressed panel of fumed silica (possibly with added opacifier)
- High barrier laminate (diffusion-tight): 2 alternatives
 - 7 µm Al-foil with PE coating
 - PE or PET foils with AI coating (30nm), several layers

VIP Applications

Thermal conductivity: $\lambda \approx 0,005 \text{ W/mK}$

- Building insulation
 - Refurbishment of old buildings
 - Energetically optimised new buildings (low-energy and passive house)
- Transport, e.g. cooled drugs
 → space savings
- Refrigeration technology

VSI at High Temperatures


© Bavarian Center for Applied Energy Research e. V. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, and dissemination as well as in the case of industrial property rights.

Material Optimisation for High Temperatures (200 – 1000 °C)

non-optimised VSI powder: expanded perlite $T = 380 \ ^{\circ}C \ (mean temp.)$ $p = 0,01 \ mbar$ $\rho = 65 \ kg/m^{3}$ without opacifier $\lambda \approx 0,05 \ W/mK$

optimised VSI powder: perlite (or fumed silica) $T = 380 \ ^{\circ}C$ (mean temp.) $p = 0,01 \ mbar$ $\rho = 90 \ kg/m^3$ with added opacifier $\lambda \approx 0,02 \ W/mK$

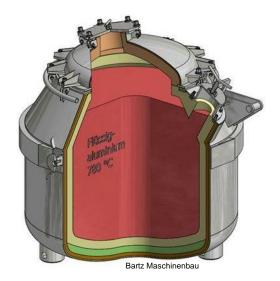
These values are extrapolated and estimated, not measured!

© ZAE Bayern

Applications for HT-VSI

- Transport crucibles for molten aluminium
 - Increase of transport range
 - Decrease of energy demand
 - Decrease of outside temperature
 - Increase of usable volume
- Industrial high-temperature processes
 - Furnaces and processing chambers
 - High-temperature waste heat storages
 - Insulation of pipelines

Example Calculation for Molten Aluminium Transport Crucibles

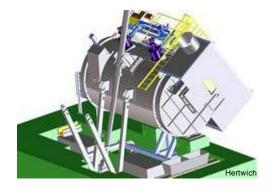


Current insulation of crucibles:

- Temperature loss of 6 °C per hour (at best)
- Container capacity: 6 t aluminium ≈ 2,5 m³
- Surface: $\approx 9 \text{ m}^2$
- U-value: $\approx 2 \text{ W/m}^2 \text{ K}$

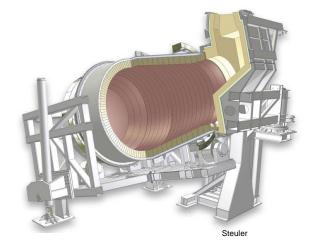
Potential of powder VSI:

- Thermal conductivity: 0,02 0,05 W/mK
- 10 cm insulation thickness (\rightarrow usable volume)
- U-value: 0,2 ... 0,5 W / m^2 K



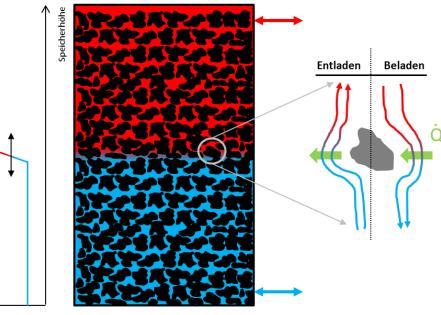
Temperature loss approx. 1–2 °C per hour (without lid)

Aluminium Furnaces



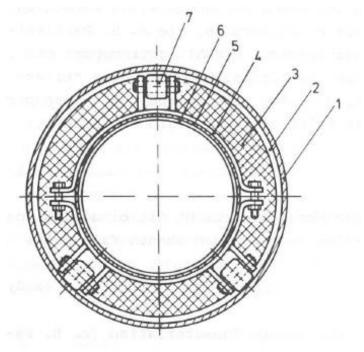
- E.g. casting furnaces, rotary drum furnaces, heat treatment furnaces
- Challenge: constructive realisation of an evacuable void
- potential: increase of energy efficiency by considerable reduction of thermal losses

Seco/Warwick



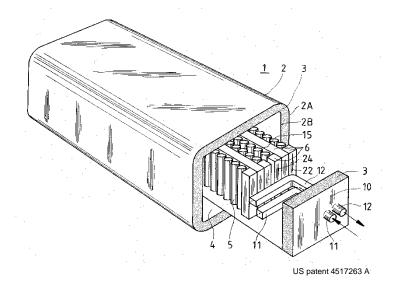
Storages for Waste Heat

- Example Project "Usage of Industrial Waste Heat at a Foundry"
- Storage of discontinuous waste heat from flue gas
- Two-component storage (thermal oil + solid medium) with T = 300 °C
- Usage of the stored heat in a drying process


Temperatur

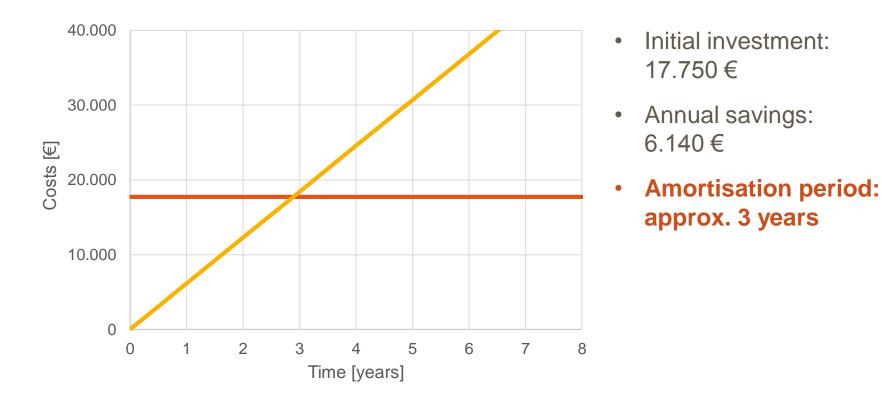
High-Temperature Pipelines

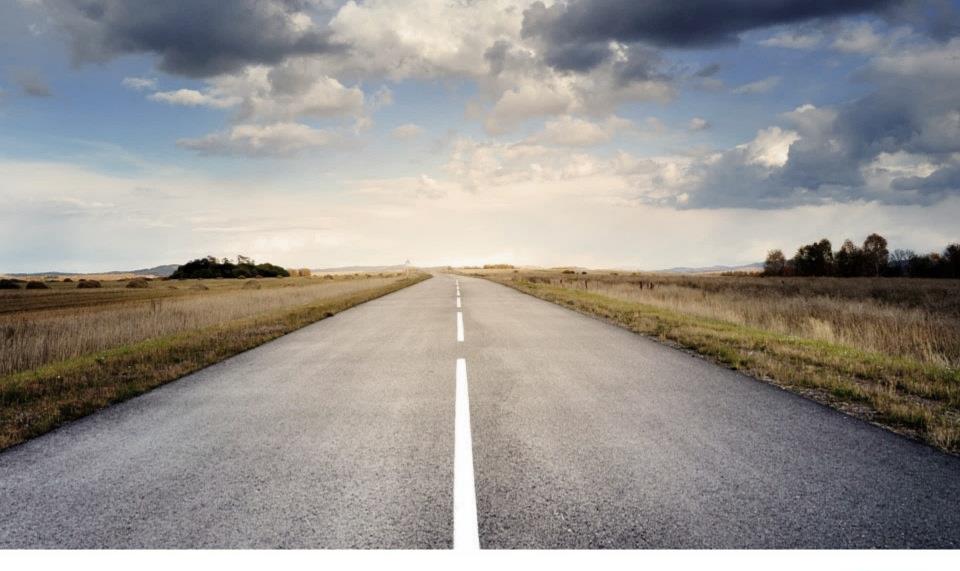
- Heat transfer media: steam, thermal oil, air
- Construction of double-walled VSI pipelines is known from district heating (up to 180 °C)


- 1 Stahlmantel
- 2 Luftspolt
- 3 Wärmedämmung
- 4 Rohrschelle
- 5 IT-Zwischenlage
- 6 Stahlmediumrohr
- 7 Rolle des Rollenlogers

High-Temperature VIPs

- Laminates containing PE and PET, which are currently used for almost all produced VIPs, are generally not applicable above 100 °C
- Envelopes from steel (or other metals) are necessary
 - Steel foils (75 µm) already in 1990
 - Current approaches: reduction to 25 µm


Profitability of VSI


© Bavarian Center for Applied Energy Research e. V. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, and dissemination as well as in the case of industrial property rights.

Estimated Amortisation Period of a VSI Storage

- Comparison: 25 m³ VSI storage vs. Conventional storage with mineral wool (insulation thickness 20 cm in both cases)
- Storage temperature 600 °C, outside temperature 0 °C

Conclusion and Outlook

© Bavarian Center for Applied Energy Research e. V. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, and dissemination as well as in the case of industrial property rights.

Conclusion and Outlook

- For hot water storages, VSI reaches thermal conductivities which are lower by a factor of approx. 5 compared to conventional insulation materials (state of the art).
- Using an infrared opacifier, we expect values which are lower by a factor of approx.
 4 to 10 compared to high-temperature insulation or refractory materials at 750 °C.
- The experimental proof of these thermal conductivities has not been carried out yet (need for research).
- For some applications, the vacuum-tight encapsulation of VSI powders may be technically challenging (need for technology development).
- ZAE Bayern is looking for industry partners with specific applications for HT-VSI to apply for a federally-granted R&D project, planned to start in autumn 2017.

Thank you for your attention!

Matthias Demharter, M.Sc. Dr. Thomas Beikircher

ZAE Bayern Bavarian Center for Applied Energy Research e. V. Department Energy Storage (ES)

Walther-Meißner-Str. 6 D-85748 Garching

Tel.: +49 89 329442-51 Fax: +49 89 329442-12

matthias.demharter@zae-bayern.de thomas.beikircher@zae-bayern.de http://www.zae-bayern.de

