

AMAP P5 - Precompetitive Research on Pyrolysis and Melting

Prof. Dr.-Ing. Georg Rombach

AMAP Colloquium, June 1st, 2017

Process:

Al-Melting in hearth-type melting furnace

Material:

Used organic coated baverage cans (UBCs)

Scope:

Understanding of scrap behaviour and furnace metallurgy Detailed description and CFD simulation of present phenomena

Process sequences and phenomena

Integrated Model Approach

- Gas reactions (thermolysis and organics decomposition)
- Dross formation related to scrap input / solid liquid interactions
- Dross formation depending on organic residues / gas liquid interactions
- Dross formation related to salt usage
- CFD furnace model
 - · Combustion and heat transfer
 - Free surface melting
 - Organic gas release

Project Work Structure

	Literature research	Experiments + Evaluation	Analytic Determination	Modelling
	(1)	[2]	[3]	(4]
2 Pyrolysis				
3 Combustion/ Heat transfer				
4 Melting		l i i i i i i i i i i i i i i i i i i i		
5 Dross formation (s/l)				
6 Dross formation (g/l)				
7 Dross formation (salt)				

WP2: Pyrolysis

3. Data processing and simulation integration

- Development of method, MATLAB algorithm and user-defined function to:
 - convert the measured species' vol. fractions into absolute mass emissions (methane equivalent)
 - transform them into computable datasets for simulation integration
 - calculate time dependent properties (H_{inf} etc.) of the gas mixture

Bruns, H.; Rückert, A.; Pfeifer, H.: Approach for Pyrolysis Gas Release Modelling and its Potential for Enhanced Energy Efficiency of Aluminium Remelting Furnaces. Energy Materials 2017 – Conference Proceedings. Editors: Liu, X. et al. pp: 87-95, Springer 2017

WP5: Solid-liquid reactions

Dross formation related to scrap input by solid-liquid interactions

1. Development of methods

- Lab scale investigation of thermal pretreatment, level of contamination and density of baled UBC scrap of dross formation and metal loss
- Measurement of heat transfer through dross layer into melt as CFD furnace model input

2. Investigated parameters

- Qualitative and quantitative impact of carbon reactions at dross metal interface
- Impact of pyrolysis/thermolysis on physical and chemical dross formation reactions
- Effect of scrap porosity and density on dross formation
- Radiative and conductive heat transfer through dross layer

J. Steglich, R. Dittrich, G. Rombach, M. Rosefort, B. Friedrich, A. Pichat: Dross formation mechanisms of thermally pre-treated used beverage can scrap bales with different density. Light Metals 2017, ed. by. A. P. Radvik, TMS, February 27, 2017, San Diego, California, USA

WP5: Solid-liquid reactions

Dross formation mechanisms of coated can sheet with and without thermal pre-treatment based on microscopic- and SEM EDX-results.

J. Steglich, R. Dittrich, G. Rombach, M. Rosefort, B. Friedrich, A. Pichat: Dross formation mechanisms of thermally pre-treated used beverage can scrap bales with different density. Light Metals 2017, ed. by. A. P. Radvik, TMS, February 27, 2017, San Diego, California, USA

WP6: Pyrolysis Gas - Liquid Reactions

Phenomena of submerged UBC bales

Simulation of gas-liquid reactions in exp. setup

Selection of pyrolysis gases for gas/liquid test

- Aromatic compounds are not stable over 750°C: thermal decomposition into C_5H_6 cyclopentadiene and CO
 - C₄H₁₀ (butane): representative for long-chain hydrocarbons
- CH₄, CO₂ and CO as typical pyrolysis gases

L

• O₂: enclosed air due to scrap packaged structure

Example: Reactions of liquid Al - CO₂
(1)
$$Al_{(l)} + \frac{3}{2}CO_{2(g)} = \frac{1}{2}Al_2O_{3(s)} + \frac{3}{2}CO_{(g)}$$
 $\Delta G(1023 \text{ K}) = -379 \text{ kJ/mol}$
(2) $Al_{(l)} + \frac{3}{2}CO_{(g)} = \frac{1}{2}Al_2O_{3(s)} + \frac{3}{2}C_{(s)}$ $\Delta G(1023 \text{ K}) = -367 \text{ kJ/mol}$

WP6: Experimental Investigation

Metal Loss

WP6: Discussion and Conclusion

$\rm CO_2$

- High impact on dross formation
- 2-stage reaction mechanism
- No carbide formation in the presence of $CO_2 \rightarrow assumption$ of re-oxidation by excess CO_2

СО

- Formation of γ -Al₂O₃ and graphite
- Moderate influence on dross formation

O₂

- Less influence on dross formation
- Formed γ -Al₂O₃ film on gas bubble surface inhibits further oxidation

CH_4 and C_4H_{10}

- Aluminum acts as catalyst for the thermal decomposition of hydrocarbons
- Butane decomposes into methane (CH_4) and propene (C_3H_6)
- Moderate influence on dross formation

Model integration

- Combustion
 - variation of conventional and flameless combustion
- Gas emissions during de-coating
 - hydrocarbons and moisture evaporation from bales
- Melting Process
 - Generic model of phase changes transformation from solid ingot model to bale model (porous medium)
- Possibilities of model application
 - Experimental determination of parameters for different scrap input
 - Construction of twin chamber furnace model and transfer of generated knowledge
 - Validation of the furnace model's general behavior (combine pyrolysis gas emission, water evaporation, combustion etc.,

