An innovative value chain for sustainable products

Christian Leroy, Innovation & LCA, European Aluminium AMAP colloquium, 16 Nov 2017, 4pm

/ Presentation outlines

1/ Who we are

2/ The Aluminium sector in Europe and the main applications

3/ Our vision, the sustainability roadmap and the Innovation Hub

4/ The main R&D challenges along the value chain5/ Some examples of collaborative EU projects6/ Conclusions

approx. **600** plants in 30 European countries

(EU 28, EFTA and Turkey)

and indirect jobs across Europe's value chain

€39.5

Billion annual turnover [2015]

90%

Founded in **1981**

European

Aluminium

represents the

entire value chain

of the aluminium industry in Europe

80+

members

An innovative value chain serving EU key markets

of aluminium is recycled in construction and automotive in Europe

Europe produces

16%

of worldwide aluminium, half of which from recycled sources

EUROPEAN ALUMINIUM / 2

EUROPEAN ALUMINIUM / 3

Svenskt

TALUM

alro

Aluminium

1/ The aluminium value chain

EUROPEAN ALUMINIUM / 4

2 / Aluminium Markets & production in Europe

MAIN END-USES FOR ALUMINIUM PRODUCTS IN EUROPE IN 2015

2 / Aluminium Sector in Europe*, 2015

EUROPEAN ALUMINIUM / 6

2 / Applications

MAIN END-USES FOR ALUMINIUM PRODUCTS IN EUROPE IN 2015

Key-attributes:

- Lightweight
- High mechanical resistance to weight ratio
- Corrosion-resistance
- Crashworthiness
- Dimensional stability
- No ageing
- Formability
- Barrier property
- Aesthetics

EUROPEAN ALUMINIUM / 7

2 / Aluminium in mobility

Aluminium's low density, high strength-to-weight ratio, dimensional stability, corrosionresistance, formability, recyclability and crash resistance is a key driver of lightweight, safe vehicles that contribute significantly to fuel savings and safety in transport.

Average component content per vehicle 2016

- Total European car production -

- Engine Blocks
- Pistons
- Other engine
- Suspension arms
- Subframes
- Brakes

OSP

- Driveline
- Heat Shields
- Body Closures

- Heads
- Mounts
- Steering
- Knuckles
- Wheels
- Trim
- Heat Exchangers
- Body Structures
- CMS

Source : Ducker study 2016 for European Aluminium

2 / Aluminium makes Electric vehicles lighter and safer

- Many electric vehicles are aluminium intensive
- ✓ Telsa Model S has the highest safety rating

2 / Aluminium is also used in battery systems

Aluminium extrusions in Aluminium cables battery frames

Aluminium for battery cooling

2 / Aluminium in construction

Aluminium offers dimensional stability, high strength-to-weight ratio, corrosion resistance, durability and recyclability. These key assets stimulate the development of products that directly contribute to sustainable buildings, through natural lighting, energy savings, air tightness and energy production through solar heating and photovoltaics.

2 / Aluminium in packaging

The unique intrinsic properties of aluminium – high formability, lightweight yet strong, attractive metallic appearance, providing a total barrier to light, gases and moisture and recyclability - make it a preferred packaging material for food and drink.

2 / Aluminium in Consumer durables and electronics

Aluminium's dimensional stability, light weight, durability, conductivity and recyclability are key assets in making aluminium an ideal material in electronics and consumer durables, particularly in premium products.

« Aluminium is a key enabler of Europe's transition to sustainability and responds to today & tomorrow's societal needs»

3 / The European aluminium industry's Sustainability Roadmap 2025

"The Roadmap is born from our belief in the fundamental need to reconcile sustainability and growth objectives in Europe" Pierre Vareille, European Aluminium Chairman, April 2015

3 The European aluminium industry is committed to sustainability

The 2025 Sustainability Roadmap

- Covering the entire value chain
- Setting voluntary targets in three areas
- Engaging members in exchanging best practices, sharing expertise and developing joint projects
- Monitoring progress regularly through the Sustainable Development Indicators
- Integrating input from external experts

https://www.europeanaluminium.eu/policy-areas/sustainability/

A CLEAR VISION FOR 2025

3 / Innovation Hub as key enabler

define the EU's research agenda and priorities

3 / « Innovation Hub » : What is it?

- Based on a long history of European
 Aluminium's involvement in education and technology
- Based on some excellent past projects, e.g. VIR* projects, SuperLightCar project, and current projects, e.g. E2Vent
- Officially initiated in 2015 following a strong recommendations of top executives
- It is a coordinated industrial platform where European aluminium companies are committed on a voluntary basis
 - To collaborate together on key RTD topics and innovations
- To collaborate with other key stakeholders in Europe, e.g. RTOs, other industrial sectors, policy makers, etc.

3 / Innovation Hub: main Objectives

> Framework objectives

- 1. Providing a European-wide view on the technology and R&D needs for developing a coherent approach to R&D along the aluminium value chain.
- 2. Acting as a key stakeholder in the most relevant European Private Public Partnerships (PPPs), including Sustainable Process Industry through Resource and Energy Efficiency (SPIRE), Factory of the Future (FoF) and Energy Efficient Buildings (EeB).
- 3. Developing a Innovation Hub Community by stimulating networking and cooperation between the Aluminium industry and the R&D community, e.g. by organising innovation workshop targeting calls and topics of key EU funding programs, e.g. the Horizon 2020 program

Project objectives

- 1. Initiating and facilitating the development of EU funded R&D projects directly addressing the aluminium value chain
- 2. Facilitating the members participation in those projects
- 3. Joining EU project when relevant.

Communication objectives

Positioning Aluminium sector as a key player in the EU Innovation landscape

3 / The « Innovation Hub » concept

European Aluminium

3 / 14 Companies and 2 MG engaged in 2017

3 / Engagement in key innovation platforms & markets

3 / Stimulating joint projects & knowledge sharing

KULeuven workshop on 31 May 2016

- First major event
- > 50 experts and innovation leaders from company members, Academia & Research & technology organisations (RTO)
- Successful for better connecting aluminium industry with RTO and potential partners.
- Publication of the <u>mapping report</u>.

3 / Developing the community: Leaflet

EUROPEAN ALUMINIUM / 25

3 / Highlighting Innovation stories

http://www.european-aluminium.eu/about-aluminium/stories-of-innovation/

3 / Aachen-AMAP Workshop – 21 June 2017

60 participants More than 20 presentations Good networking, some project ideas initiated, one EU project idea on bottom ash

Time	Торіс	Speaker
9:30 - 9:45	Welcome by European Aluminium & AMAP	Gerd Götz, Director General Berndt Friedrich, Professor
9:45 -10:15	Innovation Hub: Introduction, objectives and status	Philippe Meyer, Chairman of innovation TF Christian Leroy, Hub manager
10:15–10:45	From raw material to semi's – Aachen contributions for a sustainable process chain	Berndt Friedrich, Professor
10:45- 11:00	Presentation of the parallel sessions organisation and objectives	Christian Leroy, Hub manager

11:15 - 15:15 Parallel sessions: initiating project ideas (see next page for details)

	Room 1	Room 2	Room 3
	Recycling & Melt purification	Primary and alumina	Manufacturing
11:15 - 12:40	Session I	Session I	Session I
12:40 -13:30	Sandwich Lunch break		
13:30 -15:10	Session II	Session II	Session II

15:15 -15:30: Coffee break

15:30 – 16:30 Plenary session - Wrap-up and next steps plenary room XX			
15:30 - 16:00	Reporting from parallel sessions	Facilitators	
16:00-16:30	Debriefing, gaps analysis, next steps and actions	Christian Leroy	

3 / Aachen WS – 21 June 2017 – Topics of the parallel sessions

	<u>Room 1-</u> Recycling	Room 2 - Primary production	Room 3 - Manufacturing & Materials
	Recycling & Melt purification Facilitator: Magdalena Garczynska, European Aluminium	Primary production – Process optimisation Facilitator: Thymis Balomenos, Aluminium of Greece	Manufacturing - Forming Facilitator: Bruno Chenal, Constellium
Cossion I	Session Introduction and guidelines - H2020 opportunities for recycling - Magdalena Garczynska (20')	Session Introduction and guidelines – Thymis Balomenos (15')	Session Introduction and guidelines - H2020 opportunities for manufacturing - Christian Leroy (10')
11:15 – 12:40	Impact of organics in Al-scrap on process and efficiency Pr. Bernd Friedrich- IME -RWTH (35')	H2020 opportunities for the primary production and Rethink-Al project proposal - Arne Petter Ratvik -SINTEF	Rolling and further processing of flat products at the IBF Author: Stephan Hojda - IBF (25')
	Removing of Fe from the melt through high	(40')	Texture-based metal plasticity modelling– Philip Eyckens - KULeuven (25')
she	sheer processing technologies – Geoff Scamans – Brunel University (30')	Pragmatic Modelling in Aluminium Electrolysis Stein T. Johansen - SINTEF (30')	Innovating methods for industrial issues: examples in joining, shape forming, and characterisation for Al alloys- Laurent BEDEL & Etienne BOUYER – CEA-tech (25')
		12:40 -13:40 - Lunch break	
	Recycling & Melt purification Facilitator: Andy Doran, Novelis	Primary production – Learning from other sectors Facilitator: Luc Demange, Rio Tinto	Manufacturing - surface & Joining Facilitator : Peter Von Czarnowski, Elval
Session II	"Closing the dross loop" – Dr Morten Onsøien - SINTEF" (25')	Heat recovery and storage for industrial processes, Example of the Smartrec project Laurent BEDEL & Etienne BOUYER – – CEA tech (25')	Corrosion and surface properties of recycled aluminium – Iris de Graeve - VUB (25')
13:40 – 15:10	"Dross control and utilization" - Pr. Gabriella Tranell - NTNU (25')	DISIRE project - Integrated Process Control Based on Distributed In-Situ Sensors – Opportunities for Al industry - Aleksandra Lewandowska – Fraunhofer (25')	Joining of high strength (6000) Al alloys Simon Olschok – ISF (25')
	"Aluminium recycling from bottom ashes" – Pr. Mario Grosso – Polytechnic of Milan (25')	Main learnings from ULCOS project(s) – Jean-Pierre Birat, IF Steelman Consulting (25')	Joining challenges for the implementation of high strength Al Alloys in high volume automotive production - Michael Ölscher – Ford (25')
	Session summing-up – All + 2 facilitators (15')	Session summing-up - All + 2 facilitators (15')	Session summing-up - All + 2 facilitators (15')

EUROPEAN ALUMINIUM / 28

3 / RECALSE: <u>RECycling-friendly wrought AL</u>uminium value chain for a <u>Sustainable Europe</u> (rejected by EC in June 2017)

<u>Main objective</u>: enable the integration of at least 20% of post-consumer scrap as sourcing of the value chain of wrought products

- 3 automotive components (e.g. door, B-pillar and battery box) will be produced for demonstration purposes

N°	Partners of the project	Country
1	Ciaotech-PNO	IT
2	Aleris	DE
3	Assan	TR
4	Constellium	FR
5	Elval	GR
6	European Aluminium	BE
7	Hydro	NO
8	Novelis	UK
9	Sapa SE	
10	Manchester University	UK
11	VUB-Brussel	BE
12	Brunel University	UK
13	IKA-RWTH	DE
14	IRT-M2P	FR
15	SWEREA-KIMAB	SE
16	NTNU-SIM Lab	NO
17	KULeuven	BE
18	International Al Institute	UK

<u>Project·Duration</u>:·48·months¶ <u>Estimated·EU·contr.</u>:·12.500.000€¶

3 / RemovAL: Removing the waste streams from the primary Aluminium and other metallurgical sectors (SC5-14-2017)

- Objective: Deliver and validate a complete feasibility study for valorising Bauxite Residue (BR) along with other industrial by-products, taking into consideration waste characteristics, logistics and potential for symbiosis with other plants in the geographical vicinity.

- 13 M€ EU funding requested, 4 years project

- 27 partners including: <u>Mytilineos S.A.(formerly Aluminium of Greece)</u>, Rio Tinto, Alcoa, Alum, European Aluminium and IAI

EUROPEAN ALUMINIUM / 30

4 / The mapping exercise of the Innovation Hub

Define the innovation needs and priorities of the European Aluminium Industry along the value chain

First consolidated report published in May 2016

4 / Seven generic objectives

have been identified for supporting the sustainability of Aluminium industry & delivering innovative solutions

- 1. Improve energy efficiency and reduce CO2 emissions
- 2. Improve resource efficiency
- 3. Reduce environmental impact
- 4. Optimise process technologies
- 5. Develop new materials
- 6. Develop and optimise enabling technologies
- 7. Develop the industrial competence, skills and aluminium knowledge

4 / The aluminium value chain & key process steps and product stages

4 / Alumina - Key objectives

Generic objectives	Specific objectives	R&D challenges
Improve energy efficiency and reduce CO ₂ emissions	Reduce by 20% the energy use or/and the CO ₂ emission of the alumina process	Further optimise leaching and calcination process
		Develop low-temperature heat recovery technologies
Improve resource efficiency	Use of lower-grade bauxite	Develop bauxite pre-treatment process to reduce transformation costs and residue storage
Optimise process technologies	Increase the life time of the plant	Improve maintenance techniques and durability of materials (e.g. reduce caustic embrittlement).
Reduce environmental impact (air)	Reduce NO _x and particles air emissions	Develop and implement more advanced burner and abatement technologies
	Develop sustainable bauxite residue storage or use of residue	Develop maintenance-free storage solutions
Reduce environmental		Use bauxite residue as ingredient of products, e.g. construction products
		Develop technologies to convert bauxite residue into valuable resources, e.g. extracting vital raw materials.

4 / Primary production (Precompetitive R&D)

Generic objectives	Specific Objectives	R&D challenges
Improve energy efficiency and reduce CO ₂ emissions	Reduce direct CO ₂ equivalent emission	Use of biomass as raw material in anode production – bio-anodes
	Develop extended-life pot lining (> 5,000-day life)	Eliminate or improve control of cathode erosion
Optimise process technologies	Improve alumina dissolution behaviour in the pots	Dissolution mechanisms understanding (behaviour in bath, and alumina characteristics)
Reduce environmental impact (solid waste)	Discover alternative techniques to turn aluminium process waste into usable feedstock/products	Qualify recycled refractory materials obtained from spent pot lining and bake furnaces
	Address industry excess salt bath short to mid-term trend	Shared project/evaluation with the bauxite & alumina stream on alumina soda content
Improving overall performance on HSE aspects	Improving the overall performance on Health and Safety	Decrease human exposure to health and safety hazards by improving plant automation and process control

4 / Semi-fabrication

Generic objectives	Specific objectives	R&D challenges
Improve energy efficiency and reduce CO ₂ emissions	Reduce thermal energy and electric consumption of furnaces	Optimise further processing route to reduce cycle time and energy consumption e.g. at pre-heating and homogenisation
Optimise processing technologies	Increase fabrication efficiency through better control of the aluminium deformation process and improved tool performances	Maximise tooling life through new surface treatment or new materials for extrusion dies or rolling rolls
	Improve knowledge for more cost effective and robust processing routes	Better understanding of microstructure evolution along the process chain
	Develop modelling capabilities for more cost effective and robust processing routes	Develop real-time predictive modelling tools
	Increase manufacturing efficiency through better monitoring via sensors and measurements	Develop new or improved non-contact sensors and surface inspection devices
	Use of continuous casting technologies	Develop continuous casting technologies and associated alloys
New processing routes for more performing products	Develop further alloy capabilities and performances through non-conventional processes	Develop a cost efficient process routing to make powder-metallurgical products, routed via rolling feedstock, via extrusion feedstock, via net shape manufacturing technologies

Generic objectives Specific objectives Area Better control and predict forming behaviour Optimise process technologies Forming Develop further forming technologies Develop advanced joining techniques that reduce impact on material properties Joining Optimise process technologies Develop low cost joining techniques for dissimilar materials and hybrid solutions Machining Optimise machining processes for more eco-efficiency **Optimise process technologies** Reduce environmental impact Develop alternatives to chromate coatings Surface & coatings Optimise process technologies Develop aluminium product with tailor-made and functionalised surface properties Additive New disruptive technologies Additive manufacturing for tailor-made aluminium products (bulk) or surface properties manufacturing Use of numerical methods for analysing and guiding robust and eco-efficient design of products **Product Design** Optimise design technologies Optimise design for light weighting & crash management Skills and knowledge Secure proper expertise along the product value chain. All Improve the level of knowledge and expertise in downstream industry and in Education engineering education

4 / Product Manufacturing

4 / Recycling

Area	Generic objectives	Specific objectives
Scrap & raw materials	Improve resource efficiency	Generate high quality aluminium scrap flow from contaminated or mixed scrap flows
		Facilitate closed loop recycling within alloy groups
	Improve process efficiency	Increase performance of raw materials, master alloys, grain refining agents
Melting & solidification	Improve energy efficiency and reduce CO ₂ emissions	Reduce the energy consumption of the melting furnace and associates CO ₂ emission by 20%
	Improve resource efficiency	Reduce the oxidation rate in refining furnaces by 50%
	Improve resource efficiency	Increase service life of furnaces by 50%
	Optimise process technologies	Increase quality and composition of the melt before casting (analysis)
Products & alloys	Material development	Expand the applications of recycled aluminium by better management of impurities
	Material development	Develop new high performance alloys based mostly on recycled aluminium
Horiz.	Improve safety	Significantly reduce the risk of fire and explosion
	Optimise process technologies	Better control recycled aluminium quality

5 / SCALE project (2017-2020)

SCALE: Production of Sc compounds & Sc-Al alloys from European metallugrical by-products

The **ENSUREAL project** aims to demonstrate a modified version of the Pedersen process for the production of alumina. The main advantages of the process are:

- 1) Zero waste: No red mud, only useable by-products like pig-iron and limestone.
- A wider range of bauxite qualities can be used (more efficient mining, less tailings, better profitability for the mine, and security of supply for Europe since European bauxite qualities generally have a lower quality

5 / AGRAL project (2015-2018)

<u>Objectives:</u> Developing the manufacturing technologies of a specific anodic material that has shown at lab scale outstanding properties in high temperature and corrosive media of the aluminium electrolysis. <u>Benefits:</u> The use of inert anode in the aluminium production would decrease by a minimum of 50% the CO2 emissions as compared to the current process with carbon anode.

EUROPEAN ALUMINIUM / 41

MOdel based coNtrol framework for Site-wide OptimizatiON of data-intensive processes

The **MONSOON** project - **MO**del-based coNtrol framework for **Site-wide OptimizatiON** of data-intensive processes - aims to establish **data-driven methodology** to support identification and exploitation of optimization potentials by applying **model-based predictive controls** so as to perform plant and site-wide optimization of production process. The ambition of **MONSOON** project is shared by 2 significant **process industries** from the **sectors** of **aluminium** and **plastic.**

5 / LoCoMaTech project (2016-2019) LoCoMaTech

Full name: Low Cost Materials Processing Technologies for Mass Production of Lightweight Vehicles Objective: to enable the novel HFQ[®] process, (solution Heat treatment, cold die Forming and Quenching) patented by ICL, (TRL4), to be used for the manufacture of lightweight, high strength body and chassis structures and components for low-cost vehicles, by establishing a prototype, full scale pilot production line (TRL6)

HFQ® Heat Treatment Forming and cold-die Quenching system for high-strength aluminium alloys

(X)

ALUMINIUM VALUE CHAIN

fabrication

Product manufacturing

5 / ALLIANCE project (2016-2019)

AffordabLe Lightweight Automobiles AlliaNCE

- Effective and affordable lightweighting requires a holistic approach;
- High complexity of this optimisation makes lightweighting one of the most challenging tasks of modern automotive designers and engineers.

An International Hub For Lightweight Innovation

ALLIANCE has the ambition to become a central hub for innovation in lightweight design in Europe. To do so, it will establish an open inclusive framework towards external centres and clusters in this field, involving them in the project through an Open Lightweight Design Contest and dedicated workshops.

EUROPEAN ALUMINIUM / 44

5 / E2VENT project (2015-2018)

- <u>Objective</u>: development of an Energy Efficient Ventilated Facades for Optimal Adaptability and Heat Exchange enabling low energy architectural concepts for the refurbishment of existing buildings
- <u>Principle</u>: external thermal building refurbishment solution with an external cladding and an air cavity that embeds different breakthrough technologies
- European Aluminium is partner in this project

6 / Conclusions

- Aluminium has several unique properties to support smart sustainable solutions
- The European Aluminium industry is committed to its sustainability roadmap 2025 and to make aluminium a key-enabler to the low carbon society and circular economy.
- The Innovation Hub is the collaborative platform to coordinate precompetitive research efforts supporting the sustainability roadmap.
- Any interested stakeholders is invited to join the community (innovation@european-aluminium.eu)
- Thank you for your attention

More info

Christian Leroy Consultant Innovation & LCA leroy@european-aluminium.eu Phone +32 2 775 63 57 Mobile +32 478 45 90 16

Avenue de Broqueville 12 – 1150 Brussels, Belgium EU Transparency Register No 9224280267-20 european-aluminium.eu

