

OpenPhase Solutions

Microstructure simulation in metallic materials

Johannes Görler

The Company

- Start-up of ICAMS, Ruhr-University Bochum
- Founded by four ICAMS scientists in 2018

The Company

Goal: Provide innovative and accessible microstructure simulation solutions

- Multiphysics simulation suite
- Diverse applications and materials
- Cutting edge
 scientific development

The Software

Obtain microstructure and materials properties from process parameters

- Mechanical properties
- Microstructure morphology
- Element distribution

The Software

Outline

- OpenPhase Products and Services
- Short introduction to the phase-field method
- Mg-Al casting simulation
- Coarsening of carbon nanotube reinforced aluminium
- Dynamic recrystallization in austenitic steel

Outline

- OpenPhase Products and Services
- Short introduction to the phase-field method
- Mg-Al casting simulation
- Coarsening of carbon nanotube reinforce aluminium
- Dynamic recrystallization in austenitic steel

Software

- **OpenPhase Studio:** Full-featured simulation suite
- OpenPhase Core: powerful opensource Phase-field library

OpenPhase Studio

Based on OpenPhase Core, **OpenPhase Studio** provides:

- Intuitive **GUI** (Graphical User Interface)
- Built-in analysis of key properties
- **Presets** for quick and easy simulation setup
- Built-in **documentation** with context based navigation
- Windows and Linux versions available

OpenPhase Studio

Dhac	o Sotup					Module	Soloctio					N.C.	rostruct	uro					Simulation	
Phas	Phase Setup			Module Selection						Microstructure						Simulation				
elect Elements:																				
	н																	Не		
	Li	Be											в	С	N	0	F	Ne		
	Na	Mg											AI	Si	Р	S	Cl	Ar		
	к	Са	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		
	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe		
	Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn		
	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og		<
Select Phases:																				
∽ Phase																				^
Enter Phase	ise									Reference Element										
Gamma			NI												✓ ?					
V Phase	ase									Deference Element										
Litter Filase													Reference	e Lieme	iic					~

OpenPhase Studio

Phase Setup	Module Selection	Microstructure	Simulation	
elect Modules:	Enter Parameters:		Info:	
BoundaryConditions	Elasticity 🛛 Phenomenolo 🖾 Damage	Orientation 🗵 Nucle 🗸 🕨	Solve heat diffusion using the implicit solver (function of	all
ChemicalProperties		^	by a 1D extension in arbitrary direction, the effective bo	undary
' Chemistry	Boundary Conditions X	?	condition at the end of the extension is then fixed.	
Composition		-	\$ThermalDiffusivity_PHASE	
ThermodynamicFunctions	FreeBoundaries	~	Thermal diffusivity for PHASE.	
ThermodynamicInterface			\$HeatCapacity_PHASE	
/ Mechanics			Heat capacity for PHASE, must be identical to the one s @Temperature if used in conjunction.	supplied in
🗹 Damage	Boundary Conditions Y	?	\$Tolerance	
Elasticity			Maximum residual for the implicit solution of heat diffu	sion. Default to
Orientation	AppliedStrainRate	~	1E-8.	
PhenomenologicalCP			\$Extension_AXIS_DIRECTION	
PhaseField			1D extension of the simulation domain, AXIS is X, Y or Z,	, DIRECTION is
HeatDiffusion	BC Value Y	?	opper of Lower. Default to 0.	
✓ Nucleation	0.001		InterfaceMobility	
Run Time Control	0.001		This section contains the information on the mobility vi	alues between
Settings			the different phases and grain-boundaries of the same	phases.
Temperature			temperature dependencies.	memus type
	Boundary Conditions Z	?	\$Mu_PHASE0_PHASE1	
	FreeBoundaries	~	Grain-boundary mobility between PHASE0 and PHASE	3.
	1 Coordination		\$Eps_PHASE0_PHASE1	
			Anisotropy factor, should be chosen between 0.0 and 1. anisotropy depends on the selected crystal system. Def	.0. The interface fault to 0.
	Elasticity Model	?	\$AE_ PHASE0_PHASE1	
	<	>	If set to a different value than 0.0, the interface mobility	is calculated

11

OpenPhase Solutions GmbH

OpenPhase Core

Support

- Quick and reliable support
- Configure simulations, answer technical and scientific questions

Training

- OpenPhase training is available for beginners and advanced users
- Immediately work productively with OpenPhase

Custom solutions

- Custom simulations
- Custom interfaces to other software
- Implementation of new models

Outline

- OpenPhase Products and Services
- Short introduction to the phase-field method
- Mg-Al casting simulation
- Coarsening of carbon nanotube reinforced aluminium
- Dynamic recrystallization in austenitic steel

The Phase-Field Approach

- Diffuse interface between the phases. The phase distribution in space is prescribed by the phase field function $\phi(x,t)$.
- The temporal evolution of ϕ (x,t) will be derived from the principle of minimization of Gibbs energy.

Multi-phase field method + diffusion + mechanics

$$f = \sum_{\alpha,\beta} \frac{\sigma_{\alpha\beta}(\vec{n}_{\alpha},\vec{n}_{\beta})}{\eta_{\alpha\beta}} K^{\alpha\beta}(\Delta\phi_{\alpha},\Delta\phi_{\beta},\phi_{\alpha},\phi_{\beta}) + \sum_{\alpha} \phi_{\alpha} f^{\alpha}(c_{\alpha})$$

free energy functional

$$\dot{\phi}_{\alpha} = \frac{1}{n} \sum_{\beta} \mu_{\alpha\beta} \left(\frac{\delta f}{\delta \phi_{\alpha}} - \frac{\delta f}{\delta \phi_{\beta}} \right)$$

phase evolution

$$\dot{c}^{i} = \sum_{k} \nabla M^{ik} \nabla \frac{\partial f}{\partial c^{i}} = \sum_{k} \sum_{\alpha} \nabla D^{ik}_{\alpha} \nabla c^{k}_{\alpha}$$

diffusion

$$0 = \nabla \frac{\partial f}{\partial \varepsilon} = \nabla \sigma = \sum_{\alpha} \nabla \phi_{\alpha} C_{\alpha} \left(\varepsilon_{\alpha} - \varepsilon_{\alpha}^{*} - \varepsilon_{\alpha}^{1} c_{\alpha} \right)$$

mechanical equilibrium

18

0.40

0.10

0

NI

Implementation details

OpenPhase

Outline

- OpenPhase Products and Services
- Short introduction to the phase-field method
- Mg-Al casting simulation
- Coarsening of carbon nanotube reinforced
 aluminium
- Dynamic recrystallization in austenitic steel

Mg-Al Alloys

- Low density structural materials
- Automotive applications
- Consumer electronics

OpenPhase Solutions CmbH

Mg-Al Microstructure and Thermodynamics

- Mg-Al alloys microstructure consist of ⁷⁰⁰
 a-phase (HCP-Mg dendrites) surrounded by closed shell Mg₁₇Al₁₂ ⁶⁰⁰
 phase
- properties depend on the microstructure

200µm

Aluminum in at.-%

Goal:

Optimize the solidification
 morphology to form a percolating β phase around the primary α-phase

Effect of cooling rate on solidification microstructure

propertientrol

air cooling

waterfoseingies

- coarse microstructure
- connected eutectic regions

Mg-5at.%Al

- fine microstructure
- dispersed eutectic regions

Effect of cooling rate on solidification microstructure

OpenPhase

Solutions GmbH

Cooling curves

Solutions GmbH

Simulation examples: Mg-Al solidification

Simulation (cooling rate 10 K/s) Experiment (cooling rate 10 K/s)

courtesy of D. Hoeche

3D anisotropic alpha phase nucleation and growth

27

OpenPhase Solutions GmbH

Sequential Eutectic Nucleation Modeling

Evolution of microstructure during solidification

29

Monas, A., Shchyglo, O., Höche, D., Tegeler, M., & Steinbach, I. (2015). Dual-scale phase-field simulation of Mg-Al alloy solidification. IOP Conference Series: Materials Science and Engineering, 84, 012069. https://doi.org/10.1088/1757-899X/84/1/012069

Outline

- OpenPhase Products and Services
- Short introduction to the phase-field method
- Mg-Al casting simulation
- Coarsening of carbon nanotube reinforced aluminium
- Dynamic recrystallization in austenitic steel

Nano-grained Al with carbon nanotubes

Secondary-phase particles

- interact with grain boundary
- Zener drag slows down grain growth

Carbon Nanotubes

- small size, low density, stable structure
- research interest: comparison to spherical particles

Phase-field study of zener drag and pinning of cylindrical particles in polycrystalline materials, Schwarze et al., Acta Materialia, 106 (2016)

Single grain boundary behaviour

box size: 150x150x60 grid cells

Single grain boundary behaviour

33

OpenPhase Solutions CmbH

The grain boundaries form a cage around the tube

34

box size: 250x150x150 grid cells

Interaction of elongated particles with grain-boundaries

Different types of particles, constant volume fraction

box size: 512³ grid cells

35

Initial state

After 15,000 s

OpenPhase

Solutions GmbH

The grain boundaries form a cage around the tube

36

box size: 200³ grid cells

Comparison to spherical particles and tubes with different length but same global volume fraction

Outline

- OpenPhase Products and Services
- Short introduction to the phase-field method
- Mg-Al casting simulation
- Coarsening of carbon nanotube reinforced aluminium
- Dynamic recrystallization in austenitic steel

Dynamic recrystallization in austenitic steel

Challenges:

- Nucleation and grain growth depending on local dislocation density
- Large deformation combined with phase transformation

Dissertation Jan Hiebeler, thyssenkrupp Jan Hiebeler et al. MATEC Web of Conferences **80**, 01003 (2016)

Initial condition

• Reference volume with 20 µm average grain size to match experimental conditions

Boundary conditions and model assumptions

Periodic boundary conditions and uniaxial compression in zdirection

Phenomenological crystal plasticity model with

- Hardening
- Recovery

41

Nucleation condition dependent on local hardening rate

Coarsening and growth of recrystallized grains driven by reduction of stored deformation energy

3-dimensional simulation: 75% reduction

Color corresponds to effective flow stress. Recrystallized grains are indicated in green.

3-dimensional simulation: 80% reduction

Conclusion

- Phase-Field Method is quite universal
- PFM applies to diffusive timescales and continuum description of matter
- PFM is a handy tool to investigate correlations of different mechanisms controlling microstructure evolution
 - Transport and morphology
 - Nucleation and growth
 - Mechanical and diffusive dissipation
- PFM evaluates macroscopic material properties during production and service considering evolving microstructures

