

speira

Utilization of Digital Twins in a rolling plant for Aluminium

Dr. K. F. Karhausen, Speira F&E Bonn

Industry 4.0 in Rolling Mills

Typical i4.0 applications usually cover big data analytics, logistics or supply chain topics of short and aligned production operations (e.g. automotive assembly line).

The Rolling Process Chain is an exceptionally long production route on a single workpiece!

- Most rolling mills are historically grown and equipment and modernizations are from different stages and suppliers
- Sensors are available for mill control or for process documentation (Industry 3.0)
 - Many sensors of process data e.g.: temperature, force, speed, position, valves, ...
 - Few or no sensors of quality data e.g.: grain size, texture, strength, elongation, flatness, surface ...
- Production is driven by orders and machine availability, where the orders are based on fixed production recipes

speira **Consequences of fixed production recipies** precold casting hot rolling annealing heating rolling properties **Process Parameter Range** Quality Upper limit Lower limit **Process Parameter Range** Quality Upper limit Lower limit Kai Karhausen, AMAP Colloquium, Feb. 2023

Pre-Requisite for Industry 4.0

Digital Twin of a Coil

Source: "Anwendungsbeispiele von Industrie 4.0 in der Metallindustrie" • Prof. Dr. Harald Peters, BFI

Without a suitable material tracing, related to workpiece, position and orientation, Industry 4.0 cannot be implented efficiently in the metals industry!

Implementation Grevenbroich Plant – Foil Series 2

Process / value creation chain foil rolling

Hot & Cold rolled strip (AluNorf)

Foil rolling Series 2 (Grevenbroich)

speira

Production Foil-Series 2

Definition of the Cyber Physical System CPS

- o Pre-Processing in AluNorf
- ✓ Soft-Annealing
- ✓ Cooling
- ✓ 5 CR passes
- \checkmark Cooling after each pass
- ✓ Doubling
- ✓ 1 CR pass to 6 μ m
- Separating & Slitting
- o Final annealing

speira Data Organisation of i4.0 (Series 2) Foil production (mills, doubler, test center) WR-grinding Machine Data (Level 1) Production Planning Sensors, off-line measurements, etc. SQL/NoSQL – Coil Query Logistics simulation Data Lake **Process Simulation** Analytics **Property Simulation** Vizualisation SQL/NoSQL – Queries SQL/NoSQL – Database

Demonstration Digital Twin prototype

speira

 \odot

Kai Karhausen, AMAP Colloquium, Feb. 2023

Digital Twin of Coil

> Transformation of time oriented data to location oriented data

User Interface: Dashboard

crosoft Azure							PORTAL	6 speira			
1. Filter by alloy : 8079-L 2. Filter by start date : 03.07.2019 3. Filter by end 5. Plot Coil ID : 8476204000 Raw data out of bounds : (true,true,true)				oard_v4				Upo	date		
				nd date : 21.09.2019 4. Select Material_Id_red : 8476106000, 8476105000, 8476104000 •							
Digital Twin Coil - Foil Series 2 in GV				Approximate number of distinct CoildIDs in s2							
			approx. number of coils in Data Lake								
Rolled coils - ALL -			Rolled coils - FILTERED -								
Material_Id_red	Alloy	SoP	Passes	Material_Id_red	Alloy	SoP	Passes	-			
7726504000	1100-L	30.07.2019	▶ [1,5,2,6,3,7,4]	8041502020	8079-L	13.07.2019_	► <u>[5 7 4]</u>			 	
8041502020	8079-L	13.07.2019	▶ [5,7,4]	8111802000	8079 L	Spec. r	oll force p	er pass			
8041702000	8079-D	04.07.2019	▶ [1,2,3,7]	8139802020	8079-L	(
8111802000	8079-L	12.08.2019	▶ [5,2,3,7,4]	8139803020	8079-L	3					
8112501000	8079-D	04.07.2019	▶ [1,2,3,7]	8139804010	8079-L						
8112502000	8079-D	04.07.2019	▶ [1,2,3,7]	8139804020	8079-L	2.5					
8139603010	8079-L	13.11.2019	▶ [1,2,3,7]	8183508000	8079-L						
8139802020	8079-L	03.07.2019	▶[7]	8184204000	8079-L	2					
8139803020	8079-L	03.07.2019	▶ [7,4]	8226902000	8079-L	8 15					
8139804010	8079-L	03.07.2019	▶ [7,4]	8226903000	8079-L	OILFO					
	8079-L	04.07.2019	▶ [5,7]	8226904000	8079-L						

02 Digital Twin Components

Process Simulation: ROSE

Simulations are performed by **ROSE** (**RO**lling **S**imulation **E**nvironment), an in-house development of Speira with a focus on fast solvers.

Pass 4 (Foil Rolling)

Rolling Simulation Environment - ROSE

Material Modules (limited texture information)

 ClaNG* 	Classical Nucleation and Growth
 RoseRoll 3IVM+* StrucSim 	Thermomechanical Rolling dislocation based work hardening and recovery (partial) recrystallisation
 RoseAnneal 3IVM+* StrucSim 	Thermal Treatments dislocation based recovery and recrystallisation (partial) recrystallisation
 RoseWind 3IVM+* 	Thermomechanical Coil Winding Creep

Material Modules (full texture information)

•	Gia*

Core*

Deformation Texture Recrystallisation (Nucleation and Growth)

* In co-operation with IBF & IMM at RWTH Aachen and MPIE Düsseldorf Kai Karhausen, AMAP Colloquium, Feb. 2023

) sp	eira	R	ROlling Sin tolling Mo	mulation <u>E</u> n odule V8.01	ovironment 2022© Trial Licence
	Hauptmenü		ROS	E Roll		ai F. Karhausen
1	Walzparameter (*.DAT) Bearbeiten		Geladene Daten Walzparameter	Keine	Speira Tel : +	GmbH, F+E Bonn
	Banddaten (*.NTL)	Bearbeiten	Banddaten	Keine	Fax: +	-49 (0)228 552 2446
	Werkstoffdaten	Bearbeiten	Werkstoffdaten	Keine	kai.ka	rhausen@speira.com
	Vorkühler (*.RND)	Bearbeiten	emp. Gefügesimu	I. Vers.dichtemodell		
T	Optionen	Bearbeiten	emp. Ver-/Entfes	t. Legierungsabh. Editieren	es kf-Files	
2	Alles lesen (*.RUN)	Ausführen Editieren	Start der Simulati Gesamte Stichfo	ion Ige 💌	des Files	
	Lesen aus Tabelle	Ausführen	Inkrementzahl im	52	Generierung eines	
	Optimierungsmodus	Ausführen	Rechn	nung starten!	nfeldes:	
	Sensitivitätsanalyse	Ausführen			ng von ASCII illes	
	Alte Simulation sichten	Ausführen		Programmende		
	567	Fließkurvenfunkti Processing Map Darstellung der F	on ermitteln]ießkurven	Fließkur Funkt	In laden ohne venfeld: ion Programmende	

Physically based Statistical Material Model

Work hardening and Recovery:

- Assumption of a cellular structure

In Co-Operation with RWTH Aachen / MPIE Düsseldorf

Simulation of µ-chemistry

Content of intermetallic particles for different alloying content within the AA1100 specification after pre-heating in hot mill.

AA1110 Lower limit

AA1110 Upper limit

03 Application in Foil Series 2

Calculation of full material history with RoseRoll+RoseAnneal (incl. 3IVM⁺) Tracing of Dislocation Densities and cell size Calculation of strength at any point in time during processing

Soft sensor

Final yield strength

Use of Digital Twin as "Soft Sensor"

Re-Simulation of 3500+ Coils

Coil Temperature

Material Yield Strength

Digital Twin of Rolls

speira

Wear, defined as change in radius with rolled length, is calculated within the process model

$$\frac{\Delta R}{\lambda} = \frac{K\mu L^2 r\overline{\sigma} \exp\left[\frac{\mu L}{h_{\text{entry}}(2-r)}\right]}{D^2 \sigma_{\text{roll}}}$$

Roberts (1983)

Digital Twin of Work Rolls

Simulated wear for several campaigns on one set of work rolls

- \Rightarrow Determination of optimum time to change WRs in the mill
- \Rightarrow Characterisation of WR life cycle
- \Rightarrow Correlation to griding practices

Data Consistency

Digital Twins rely on complete and consistent data of <u>all</u> sensors

speira

Production Statistics

Main causes for data losses:

- "0" channels due to maintenance
- Data logger system outages
- Coil tracing errors due to reasons like strip breakage
- Failure in data conversion between logger and data lake

Summary

- A digital representation of the main components of a foil plant has been set-up in a cloud system consisting of digital twins of:
 - Coils
 - Machines
 - Work Rolls
- Digital Twins are mandatory to predict the effect of process changes on product quality.
- The Digital Twins must be based on physical process and material models. They are applied as "soft sensors" in addition to the physical sensors.
- Data-Quality and reliability is a most crucial issue.

Thank you for your attention !

speira

<u>Kontakt:</u> Dr. Kai F. Karhausen Speira GmbH, F&E Bonn Georg-von-Boeselager-Str. 21 53117 Bonn Tel: +49 (0)228 552 2728

kai.karhausen@speira.com