

Clean Air. Save Energy.

Decarbonization in foundries through heat recovery from process and hall exhaust air

Copyright © KMA Umwelttechnik GmbH 2024

The mission of KMA Umwelttechnik: Clean Air. Save Energy.

Environmental technologies have been the center of our activities since 1973

- Family-owned German company
- Approx. 100 employees at HQ in Königswinter, Germany
- More than 3.000 installations in foundries
- Air filtration and heat recovery expert for metal, food, plastic, textile industry and others
- Established partner for many well-known foundries around the world

Do you know your energy costs for heating and ventilation?

And do you know the heat energy contained in your exhaust air?

Average distribution of energy costs in a foundry

approx. 70% of energy costs (between 56 and 81%) for:

- melting
- heat treatment
- ladle management

approx. 20% of energy costs

(between 15 and 24%) for:

- die management
- ventilation and air extraction
- other energy costs

approx. 10% of the energy costs (between 7 and 12%) for: heating energy

Source: Deutsche Energie Agentur (dena, 2021) S.8: "Systematisch Energieeffizienz steigern und CO2-Emissionen senken in der Gießerei-Industrie".

Copyright © KMA Umwelttechnik GmbH 2024

Emissions and wasted heat in the context of your foundry

Exhaust filtration and heat recovery offer valuable potential for your energy efficiency

- Air quality in the production halls is crucial in competition for qualified workforce
- Increasingly strict regulations for industrial exhaust air and odors (e.g. new European BREF in 2024)
- Lowering of energy cost is critical for profitability
- Lowering of energy consumption is relevant for European legislation
- Mandatory CSR standards and CO₂ reduction targets for accreditation of supply chains

Proven approaches for CO₂ reduction and energy cost advantadges

Approach 1: Hall ventilation with heat recovery

KMA practical example: STIHL magnesium die casting foundry

Source: STIHL (https://magnesium.stihl.de/giesserei.aspx)

The Problem with emmissions in foundries

KMA practical example: STIHL magnesium die casting foundry

Hall ventilation with layered ventilation principle

KMA practical example: STIHL magnesium die casting foundry

8

Hall ventilation with heat recovery

KMA practical example: STIHL magnesium die casting foundry

Hall ventilation with heat recovery

KMA practical example: STIHL magnesium die casting foundry

STIHL WERK 4 50 JAHRE MAGNESIUM-DRUCKGUSS

Source: STIHL (https://magnesium.stihl.de/virtuelle-werksfuehrung-stihl.aspx#r=stage-teaser)

Hall ventilation with heat recovery

KMA practical example: STIHL magnesium die casting foundry

- Air exchange rate of 13 for good air quality in the foundry
- 1.350 kW/h energy recovery from the hall exhaust air
- ✓ 84% energy savings compared to conventional heating
- ✓ 85% lower CO₂ emissions (yearly savings 205t CO₂) compared to conventional heating
- ✓ Integrated **cleaning system**

Approach 2: Hall ventilation with cross flow heat exhangers

KMA practical example: project in planning stage

Assumptions:

- 6 weeks of heating need per year
- 135h of operation per week
- COP for gas heating: 85%
- Outside temperature -0°C

Exhaust air temperature (foundry air temperature)	30 °C
Exhaust air volume	270.000 m³/h
Potential for heat recovery	Approx. 1.865 kW
Energy recovery per year (with 810 operating hours)	Approx. 1.510 MWh
Possible CO₂ saving per year	370 t CO ₂
Possible CO₂ Tax savings per year (with 40€/t in 2024)	14.800 EUR
Possible energy cost savings per year compared to heating with gas (with gas price of 9 Ct/kWh)	Approx. 160.000 EUR

Approach 3: Hall ventilation with heat pump

KMA practical example: foundry in Alsace, France

- ✓ Heat pump with direct heat exchanger in exhaust and supply air units
- ✓ Heating of the fresh air in winter and cooling of fresh air in summer possible
- Very good COP of 8-10 for the heat pump (COP = Coefficient of Performance)
- ✓ Integrated **cleaning system**

Capturing emissions at the source and cleaning them in recirculation is especially efficient

1. No active air management

2. Hall ventilation

3. Local capture and cleaning of emissions

- ✓ The less contaminated air is moved the lower the energy consumption will be
- Air that is cleaned and recirculated into the hall does not have to be replaced with fresh (heated) air
- Energy savings of >80% possible compared to classic hall ventilation
- ✓ Combining exhaust operation in summer and recirculation in winter possible

Exhaust air from the building must be replaced by fresh air, to be heated during cold outdoor temperatures

Central filter system without heat recovery

Local capture of emissions and air filtration in recirculation mode is the most energy efficient approach

Decentralized filter system

KMA practical examples: DGS, NEMAK

Source: International Aluminium Journal 12/2021

Source: International Aluminium Journal 12/2019

Approach 5: Using energy efficient filtration systems

The filtrations solutions on the market vary considerably when it comes to energy consumption

- Electrostatic precipitators cause marginal pressure loss and do not clog up
- Variable fan speed allows for additional savings
- Energy savings > 80% compared to mechanical exhaust air filters
- Electrostatic precipitators do not require exhange of the filter medium
- ✓ Integrated **cleaning system**

Approach 5: Using energy efficient filtration systems

Massive energy savings are possible compared to thermal oxidation

Annual operating costs

KMA practical example:

- ✓ Heat exchanger
- ✓ Electrostatic precipitator (particle separation)
- ✓ UV-Light (odor separation)
- ✓ Active carbon (VOC-separation)

Approach 5: Using energy efficient filtration systems

Exhaust air filtration and heat recovery can be combined in integrated units

KMA ULTRAVENT® M with electrostatic precipitator and cross-flow heat exchanger

KMA ULTRAVENT® M with electrostatic precipitator and fin-tube heat exchanger

Recovering energy is only half the battle – energy utilization brings challenges

KMA practical example: ongoing design for heat recovery from aluminum melting furnaces

Application:

Shaft melting furnace in aluminum foundry for high pressure die casting

Melting capacity: 3,5t/h Holding capacity: 8t/h Max. 330 m³/h propane usage

Exhaust air temperature (at furnace chimney)	590 °C
Exhaust air volume	8.600 – 11.000 m³/h
Potential for heat recovery	Approx. 490 – 600 kW
Energy recovery per year (with 4.900 operating hours)	Approx. 2.400 – 2.940 MWh (90°C hot water)
Possible CO₂ saving per year	590 - 726 t CO ₂
Possible CO₂-Tax savings per year (with 40€/t in 2024)	23.600 - 29.040 EUR
Possible energy cost savings per year when used for heating (with gas price of 9 Ct/kWh)	216.000 – 264.600 EUR

KMA practical example: ongoing design for heat recovery from aluminum melting furnaces

Exhaust air temperature	350°C – 500°C	Application:
(average)		Shaft melting furnace in aluminum foundry
Exhaust air volume	Up to 10.000 m ³ /h	doing sand and gravity casting
Potential for heat recovery	Approx. 254 kW	Melting capacity: 1,5t/h Holding capacity: 4t/h Up to 20m³/h propane usage during holding
Energy recovery per year (with 1,000 operating hours)	Approx. 254 MWh	
Possible CO₂ Saving per year	62 t CO ₂	Assumptions: 6 weeks of heating need per year
Possible CO₂-Tax savings per year (with 40€/t in 2024)	2.480 EUR	
Possible energy cost savings per year when used for hall heating (with gas price of 9 Ct/kWh)	26.900 EUR	
		A STATE OF THE REAL PROPERTY O

Recovering energy is only half the battle – energy utilization brings challenges

ORC systems convert part of the energy in electricity

Electricity offers the most flexible usage possibilities, but the degree of efficiency is limited

Schematic representation Organic Rankene Cycle (ORC)

Absorption chillers use heat sources for cooling

This way, heat recovery from furnaces may be used for heating in winter and for cooling in summer

SYSTEM INTEGRATION

The ROI-Paradox of environmental technology

Investments in efficient environmental technology pay themselves off sooner or later!

General Manager to Technical Lead:

"If we knew about it, why didn't we invest in this energy saving technology 5 years ago? We could have saved money for the last

5 years!"

Quote, KMA customer

- Consider the planned operating lifetime, not just the desired amortization period
- Anticipate increasing energy costs and CO₂ taxes
- Use grants and subsidies
- The earlier efficient technology and heat recovery are used, the earlier you can profit from the savings

Heat recovery should be a part in your decarbonization path

In Germany for instance overall subsidies may be levered by environmental technology investments

Let us evaluate your energy saving potential together

Your contacts at KMA Umwelttechnik

Dr. Holger Wagner

General Manager +49 2244 9248 0 h.wagner@kma-filter.de

KMA Umwelttechnik GmbH Eduard-Rhein-Straße 2 53639 Königswinter Germany

www.kma-filter.de

Sales Manager +49 2244 9248 434 k.kartal@kma-filter.de

Kerem-Mevlüt Kartal

